https://www.halvorsen.blog

Light Sensor

Hans-Petter Halvorsen

Hardware

- DAQ Device (e.g., USB-6008)
- Breadboard
- Light Sensor
- Resistor, $R = 33k\Omega$
- Wires (Jumper Wires)

Breadboard

. .

																																	÷			Δ	ł	٦ľ	re	ב נ) (٩ŀ	7	ר:	ิลเ	° (İ٢		10	:F	5 C		ī (1	ι۸ί	/ir	°P)		
	٠	٠	٠	٠	٠		٠	٠	¥	٠	¥		٠	٠	٠	¥	¥			1.4		•	٠	¥		¥	Ŧ	٠	٠						4	, ,		<i>.</i>				4 6			a i	C	4	J		л <u>с</u>		. U		.0	,	vv	••		•		
	٠	٠	٠	٠	٠		٠	۰	۰	٠	۰		٠	٠	۰	٠	٠		٠	1	2	• :	٠	٠		۰	۰	٠	٠		•					ρ		זי	` †	ri	ir	• (~^	ור	n	r		۱r	۱C	rد	۱t	c	† <i>1</i>	n	σι	t ב	·h		r		
																																				L		- (- L			. (וי		Μ		1	IC	•	I C	3	U	5	5	- (.		- 1		
	÷	÷	•	÷	÷	•	•	• •						. 4		r 1	p. 1	•	÷	÷	÷		. 4		e 1	÷	•	•	•	÷	÷																														
	•	٠	٠	٠	•	• :	• •	• •	• •	• •	• •		14	1	1.4	r 1	8.9	•	٠	٠	٠		1		• •	• :	• ·	•	٠	٠	٠																														
	٠	٠	٠	٠	•	•	•	• •	• •	• •	• •		1	1	1	r 9	P 9	•	•	٠	*		1	• •	1	•	•	٠	•	۰	•	Τ																													
						•			1	1						11	1				1				1		•							1						_		_				-							_								-
LL. 1	•	•	•	•	•	•	•									<u> </u>	<u> </u>		•					<u> </u>			•	•	•	•				17			н									н					-	-	•		-	-	-0	-0		<u>'</u>	Α
																																		1											-											-0	-0				
	•	٠	٠	٠	•	• :	• •	• •	r 1	• •	• •	1	1	1	1.1	r 1	P 1	•	٠	٠	¥		1	• •	• •	• 1	•	•	٠	٠	Ŧ			-11							10													ĪĒ	Ē	iĒ	ā c	a r	11		Ē
	٠	٠	٠	٠	• :	• :	• •	• •	• •	• •	• •		1	1	1	5.9	P 9	•	٠	۰	٠		1		• •	• •	•	٠	۰	۰	۰			1 i		6	Ь	đ	đ			5			Ь	٥	ð	b	b	Ь	ð			ľ	12	ič	52	57	5	51	D
		1	1					1	1	1	1			8		11	1	1	1	1	1			1	1	1				1	1			i j			b	b	d			5			6	٥	b	b	b	b	ð				iČ	i C	5 6	57	5	5	Ł
	Ξ.	1	1																÷	1	ĩ								1	1	÷			11	٥ı	b.	Ċ.	¢	¢			5	51	b.	Ċ.	Ċ,	¢	¢	¢	¢	Ö	ı D		I Ç	Įţ) Ç	b ¢	b d	51	6	į.
	-	-	-	-		-	-	-										-	-	2	-					0	-	-	-	-				÷ I	Ċ١		Ċ.	۵	Ċ			51			Ċ.	۵	۵	Ċ	b	ð	ð	i D		ľ	ı Č	i C	b đ	56	51		į.
	<u> </u>									_				_	_			_	_	154	_		_			-			_		101	_								_				_		_															1.
					*		٠	*	۰	•	•		•	٠	•	٠	٠		1	1	1	•	•	٠		۰	۰	٠						i I	Q I		Q	Q	Q		1 6	1			Q	Q	Ģ	Q		Ģ		10		I Ç	I Ę	ļĘ) Ç) Ç		91	Ċ
		•	•				۰	۰	۰	٠	•		•	•	•	٠	٠		•			•	•	•		۰	٠	*	•	•				11	Ō١	ġ.	¢.	¢	¢	1		21	21	Ċ.	¢.	¢.	¢	¢	¢	¢	i 🗘	i 🗘	¢	I Ç	ļţ) () Ç	þ¢	21	ţ١	\sim
																																		į I	Q١	¢.	¢.	¢	¢	L,	1		1	0	¢.	¢.	¢	¢	¢	¢	i Ç	i 🗘	¢	1	۱ ۲	15) Ç	þţ	21	٥.	i.
																																		j I	Q١	0	Q.	¢	Q	L,	1	1	וק	0	Q.	Q.	Q	¢	Q	Q	i Q	i 🗘		1 🧲	15	15) Ç) (21	Q .	÷
																																		1	Ô I		٥	۵	Ċ						٥	٥		٥		٥	Ó	Ō		ľ	I Č	1 6	1 6	3 (I.
																																		Ē														-													-

Breadboard Wiring

Make sure not to short-circuit the components that you wire on the breadboard

fritzing The Breadboard is used to connect components and electrical circuits

https://www.halvorsen.blog

USB-6008

Hans-Petter Halvorsen

USB-6008

Light Sensor

Light sensor, Photocell (Photo resistor), LDR (ligh dependent resistor)

A light sensor / photocell is a sensor used to detect light.

The resistance decreases with increasing light intensity (stronger light).

According to Ohms law U = RI the voltage will then get lower when the light gets brighter

Resistors

Resistance is measured in Ohm (Ω)

Resistors comes in many sizes, e.g., 220 Ω , 270 Ω , 330 Ω , 1k Ω m 10k Ω , ...

The resistance can be found using Ohms Law U = RI

Electrical symbol:

Resistor Color Codes

Resistor Calculator: http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/

Wiring Example

Here you see a wiring examples using Arduino. You make the same wiring using a DAQ device

Made with **Fritzing.org**

Wiring Example

USB-6008 Wiring Example

We connect the Sensor to LabVIEW using a USB DAQ Device from National Instruments, e.g., USB-6001, USB-6008 or similar. I have used a breadboard for the wiring.

Wiring

The wiring is called a "Voltage divider":

[https://en.wikipedia.org/wiki/Voltage_divider]

Wiring

The wiring is called a "Voltage divider":

[https://en.wikipedia.org/wiki/Voltage_divider]

General Voltage Divider

https://learn.sparkfun.com/tutorials/voltage-dividers/all

Voltage Divider for our system

Voltage Divider Equation:

$$V_{out} = V_{in} \frac{R_t}{R_0 + R_t}$$

We want to find R_t : $R_t = \frac{V_{out}R_0}{V_{in} - V_{out}}$

 R_t - 10k Thermistor. This varies with temperature. From Datasheet we know that $R_t = 10k\Omega$ @25°C

Steps:

- 1. We wire the circuit on the Breadboard and connect it to the DAQ device
- 2. We measure V_{out} using the DAQ device
- 3. We calculate R_t using the Voltage Divider equation
- 4. Finally, we use Steinhart-Hart equation for finding the Temperature

Lux

Illuminance (lux)	Surfaces illuminated by
0.0001	Moonless, overcast night sky (starlight) ^[4]
0.002	Moonless clear night sky with airglow ^[4]
0.05–0.3	Full moon on a clear night ^[5]
3.4	Dark limit of civil twilight under a clear sky ^[6]
20–50	Public areas with dark surroundings ^[7]
50	Family living room lights (Australia, 1998) ^[8]
80	Office building hallway/toilet lighting ^{[9][10]}
100	Very dark overcast day ^[4]
150	Train station platforms ^[11]
320–500	Office lighting ^{[8][12][13][14]}
400	Sunrise or sunset on a clear day.
1000	Overcast day; ^[4] typical TV studio lighting
10,000–25,000	Full daylight (not direct sun) ^[4]
32,000-100,000	Direct sunlight

Design a Luxmeter Using a Light Dependent Resistor: https://www.allaboutcircuits.com/projec ts/design-a-luxmeter-using-a-lightdependent-resistor/

https://en.wikipedia.org/wiki/Lux

Code

- 1. Get V_{out} from the DAQ device
- 2. Calculate $\boldsymbol{R}_{t} = \frac{V_{out}R_{0}}{V_{in}-V_{out}}$
- 3. Find a relationship (a Formula) between R_t and Lux Lux = f(R_t)
- 4. Calculate the Lux value using your formula $Lux = f(R_t)$
- 5. Present the Lux value in the User Interface

https://www.halvorsen.blog

Visual Studio

Hans-Petter Halvorsen

::

-

-

22

33

.

33

99

33

-

-

22

-

100

22

.

22

We will use a Timer to read new values at a specific time interval


```
using System;
using System.Windows.Forms;
using NationalInstruments.DAQmx;
using System.Windows.Forms.DataVisualization.Charting;
namespace LightSensorApp
            public partial class Form1 : Form
                        public Form1()
                                      InitializeComponent();
                                      chart1.Series.Clear();
                                      chart1.Series.Add("My Data");
                                      chart1.Series["My Data"].ChartType = SeriesChartType.Line;
                                      timer1.Interval = 1000;
                                      timer1.Start();
                        private void timer1_Tick(object sender, EventArgs e)
                                      Task analogInTask = new Task();
                                      AIChannel myAIChannel;
                                     myAIChannel = analogInTask.AIChannels.CreateVoltageChannel(
                                      "dev1/ai0",
                                      "myAIChannel",
                                      AITerminalConfiguration.Rse,
                                      0,
                                      5,
                                      AIVoltageUnits.Volts
                                      );
                                      AnalogSingleChannelReader reader = new AnalogSingleChannelReader(analogInTask.Stream);
                                      double DaqValue = reader.ReadSingleSample();
                                      txtLightData.Text = DaqValue.ToString("0.00");
                                      chart1.Series["My Data"].Points.AddY(DaqValue);
```

{

```
public Form1()
   InitializeComponent();
   chart1.Series.Clear();
   chart1.Series.Add("My Data");
   chart1.Series["My Data"].ChartType = SeriesChartType.Line;
   timer1.Interval = 1000;
```

timer1.interval = 100
timer1.Start();

```
using NationalInstruments.DAQmx;
using System.Windows.Forms.DataVisualization.Charting;
private void timer1_Tick(object sender, EventArgs e)
       Task analogInTask = new Task();
       AIChannel myAIChannel;
       myAIChannel = analogInTask.AIChannels.CreateVoltageChannel(
       "dev1/ai0",
       "myAlChannel",
       AITerminalConfiguration.Rse,
       0,
       5,
       AIVoltageUnits.Volts
       );
       AnalogSingleChannelReader reader = new
       AnalogSingleChannelReader(analogInTask.Stream);
       double DaqValue = reader.ReadSingleSample();
       txtLightData.Text = DaqValue.ToString("0.00");
       chart1.Series["My Data"].Points.AddY(DaqValue);
```

í

Improvements

- Create and use separate Classes and in general improve the C# code
- Find a relationship between the voltage signal you read from the DAQ device and Lux, which is the official unit for measuring light
 - You can use a Lux measurement device as a reference. You can also download a Lux meter App on your Smart Phone (for free)
- Save Data to a **Database**
- Save Data to a **Text File**
- etc.

Good luck with your Application!

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

